Как заряжать герметичные свинцово-кислотные аккумуляторы. [теория]

Автомобили
11 ноября 2019

Свинцово-кислотный аккумулятор: как правильно заряжать АКБ зарядным устройством, типы восстановления батареи, номинальное напряжение

Как заряжать герметичные свинцово-кислотные аккумуляторы. [теория]

Аккумуляторная батарея – именно то, что встречается на абсолютно всех современных транспортных средствах. Основное предназначение данного узла всегда заключалось и заключается на сегодня в подаче электроэнергии на электронные устройства машины, если таковая им требуется в обход генератора.

Вообще, первые аккумуляторы появились несколько сотен лет назад. Начиная с 1800-х годов, конструкционное и техническое развитие аккумуляторных батарей привело к созданию одного из самых известных в мире видов узла – свинцово-кислотному аккумулятору.

Взяв в расчёт востребованность подобных батарей для автомобилистов, наш ресурс решил более детально рассмотреть именно их.

История появления подобных АКБ

Первым, кто создал и спроектировал реально рабочую свинцово-кислотную АКБ, был французский ученый – Гастон Планте.

Этот человек был всерьез заинтересован в создании универсальных на тот момент аккумуляторных батарей, так как имел не только научный интерес, но и отчасти финансовый.

Согласно историческим сводкам, Гастону Планте производители аккумуляторов, коих на тот момент было немного, предлагали немалые деньги за создание нового вида аккумулятора и удобной зарядки к нему.

В итоге, французскому учёному частично удалось достичь поставленной цели. Если быть точнее, Планте создал конструкцию АКБ с использованием свинцовых электродов и 10-% раствором серной кислоты.

Несмотря на инновационность кислотного аккумулятора в те года, недостаток у него был существенный – необходимость прохождения огромного количества циклов «заряд-разряд» для зарядки батареи «на полную». К слову, количество данных циклов было настолько велико, что для полного вмещения в АКБ электроэнергии могло потребоваться несколько лет.

Во многом это происходило из-за используемой в батареях конструкции свинцовых электродов и сепараторов, вследствие чего последующие несколько десятилетий умы «аккумуляторного дела» боролись именно с этим недочётом батарей.

Так, в период с 1880-1900 годов такие учёные как Фор и Фолькмар спроектировали чуть ли не идеальный среди всех типов конструкции свинцово-кислотных аккумуляторов.

Суть такой батареи заключалась в использовании не цельных пластин из свинца, а лишь его окисла, объединённого с сурьмой и нанесённого на специальные пластины.

Позже, Селлон запатентовал наиболее удачный вид конструкции данной АКБ, внедрив в неё намазанную окислами свинца и сурьмы металлическую решётку, что в итоге:

  • увеличило ёмкость аккумуляторов в несколько раз;
  • усилило коммерческий интерес со стороны компаний к АКБ;
  • и, в целом, совершило некоторый эволюционный скачок в аккумуляторном деле.

В 1970 годов произошла герметизация аккумуляторов, вследствие замены в них стандартных кислотных электролитов, на усовершенствованные газы и гели. В итоге, АКБ стала отчасти герметична.

Однако полной герметизации добиться не удалось, так как, в любом случае, при зарядке и разрядке батареи образуются некоторые газы, которые важно выпускать из внутренностей аккумулятора для его же блага.

Именно с тех пор герметизированные свинцово-кислотные аккумуляторы стали использоваться в огромнейших масштабах и практически не изменялись, за исключением незначительных усовершенствований электролитов и электродов, используемых в их конструкции.

Устройство свинцово-кислотного аккумулятора

По своей общей конструкции свинцово-кислотные АКБ уже более 110 лет неизменны. В общем виде батарея состоит из следующих элементов:

  • пластмассовый или резиновый корпус в форме призмы;
  • металлическая решётка, имеющая соответствующую намазку из свинца и подразделения на положительный, отрицательный электроды;
  • клапан для сброса газов;
  • области для наполнения электролитом, иначе — сепараторы;
  • межпространственные области, заполненные мастикой;
  • крышка.

Все элементы как стационарного свинцово-кислотного аккумулятора, так и нестационарной батареи подобного вида представляют собой герметизированный комплекс. Частично-полная герметизация имеется у большинства современных АКБ, ибо имеет системы отвода излишне давящих газов.

Полная же герметизация конструкционно предусмотрена только в высоких аккумуляторах с использованием особой конструкции электродов, что позволяет совершенно не добавлять электролит в процессе эксплуатации и не выводить газы отработки.

В любом случае, что АКБ с частично-полной герметизацией, что с совершенно полной изоляцией принято называть герметизированными свинцово-кислотным аккумуляторы, поэтому в этом плане между разными типами батарей различий не имеется.

Разновидности АКБ и принцип их работы

Ранее уже было упомянуто, что свинцово-кислотные АКБ подразделяются на разные виды.  Вне зависимости от типа их организации работают они по принципу электролитических химических реакций. В основе таковых лежит взаимодействие свинца (или иного металла), оксида свинца (с сурьмой) и серной кислоты (или иного электролита).

Именно такой тип взаимодействия в кислотных батареях был признан наилучшим, так как при гидролизе кислоты другие комбинации взаимодействия веществ приводят либо к низкому ресурсу аккумуляторов (при добавлении кальция), либо к чрезмерному «кипению» внутри детали (при отсутствии сурьмы), либо к недостаточной мощности (при использовании только свинца пластин).

На сегодняшний день имеется три основных разновидности свинцово-кислотных аккумуляторов, а точнее:

  1. Свинцово-кислотные аккумуляторы 6V. Построены по принципу использования 6 элементов, то есть, АКБ изнутри разделён на 6 работающих вместе блоков, каждый из которых в общем случае вырабатывает порядка 2,1 Вольт напряжения, что в итоге даёт 12,6 Вольт на целую батарею. На данный момент свинцово-кислотные аккумуляторы 6V наиболее используемые в сфере автомобилестроения, так как выполнены качественней всего со всех сторон рассмотрения их работы;
  2. Гибридные АКБ. Эти «звери» представляют собой смесь, где используется один электрод (зачастую положительный) со свинцово-сурьмистым оксидом, а другой (как правило, отрицательный) со свинцово-кальциевым. Такие АКБ из-за использования кальция в их конструкции менее долговечны;
  3. Гелевые свинцово-кислотные батареи. Слегка отличаются от конструкции описанных выше видов АКБ, так как имеют гелеобразный электролит, что позволяет их использовать в любой положении. По характеристикам гелевые аккумуляторы схожи с обычными свинцово-сурмистыми батареями и уже сегодня активно завоёвывают рынок автоиндустрии в своём сегменте.

Свинцово-кислотный аккумулятор 6VГелевый свинцово-кислотный аккумулятор

Как показывает практика, наиболее удачные конструкции свинцово-кислотных АКБ – это стандартная с наличием сурьмы на электродной сетке и гелевая, относительно молодая. Что касается гибридных, то в силу своих особенностей спроса на рынке они так и не имеют, поэтому практически не продаются и встретить их можно крайне редко.

Правила эксплуатации

По сравнению с другими типами АКБ, свинцово-кислотные аккумуляторы менее прихотливы к использованию. Общие требования к эксплуатации батарей предъявляют специальные организации и непосредственно их производителя. К слову, требования различны для стационарных и нестационарных АКБ. Для первых видов аккумуляторов они таковы:

  • Проверка и осмотр – еженедельно, специализирующимся на этом персоналом;
  • Текущий ремонт – не менее раз в 1 год;
  • Капитальное восстановление – не менее раза в 3 года, и только если это возможно;
  • Надёжное крепление АКБ при эксплуатации на специальных стендах;
  • Обязательное наличие освещения в месте хранения;
  • Покраска поверхности, на которой стоит аккумулятор, в кислостойкую краску;
  • Поддержание в сепараторах батареи электролита на должном уровне (проверка/долив ежемесячные);
  • Наличие зарядных устройств и соблюдение правил зарядки;
  • Номинальное напряжение в сети на 5 % большее, чем выдают заряжаемые в ней АКБ;
  • Недопущение хранения батареи в разряженном состоянии более 12 часов;
  • Температура хранения от -20 до +45 градусов по Цельсию, для заряженных на 50 % АКБ – от -20 до +30. Незаряженные батареи хранить недопустимо.

Правила зарядки

Зарядка любого аккумулятора – именно та процедура, которая должна проводиться в единственно верном режиме. В противном случае парочка неправильных операций по зарядке АКБ сделает из него либо маломощный источник тока, либо вовсе «убьёт» деталь. Зная подобную особенность аккумуляторных батарей, их владельцы нередко задаются двумя вопросами:

  1. Как правильно заряжать АКБ?
  2. Какое зарядное устройство для свинцово-кислотной аппаратуры лучше всего использовать?

Относительно второго вопроса можно однозначно сказать, что заряжать АКБ допустимо любой аппаратурой, главное – чтобы она была исправна. А о том, как заряжать свинцово-кислотный аккумулятор, поговорим более детально. В общем виде правильный порядок зарядки таков:

  1. Аккумулятор ставится в специально оборудованное для зарядки место: поверхность покрашена в антикислотную краску, открытых источников воды и огня нет, доступ к территории ограничен;
  2. После этого АКБ согласно всем нормам подключается к зарядному устройству;
  3. Затем на зарядной аппаратуре выставляется режим зарядки с соблюдением двух основных условий:
    • напряжение постоянно и равно порядка 2,35-2,45 Вольт;
    • ток по началу заряда самый высокий, к концу — постепенно и заметно понижается.

Непосредственно процесс зарядки батареи в стандартном режиме длится около 3-6 часов, за исключением случаев с использованием дешёвой и слабой аппаратуры, а также при восстанавливающей зарядке «убитой» АКБ.

Восстановление аккумулятора

В завершение сегодняшнего материала обратим внимание на процесс восстановления свинцово-кислотных АКБ. Принято считать, что при глубоком разряде данный тип аккумуляторов либо вовсе «мертвеет», либо держит очень слабый заряд. На самом деле ситуация иная.

Согласно многочисленным исследованиям, свинцово-кислотные батареи способны не потерять номинальную ёмкость даже после 2-4 полных разрядов. Для этого достаточно грамотного проведения процедуры их восстановления. Как восстановить  данный АКБ? В следующем порядке:

  1. Аккумулятор ставится в специально подготовленное место с температурой воздуха около 5-35 градусов выше по Цельсию;
  2. Происходит соединение АКБ и зарядного устройства;
  3. На последнем выставляются такие показатели как:
    • напряжение – 2,45 Вольт;
    • сила тока – 0,05 СА.
  4. Происходит цикличный заряд с небольшими перерывами порядка 2-3 раз;
  5. Батарея восстановлена.

На этом, пожалуй, наиболее важная информация по свинцово-кислотным аккумуляторам подошла к концу. Надеемся, сегодняшний материал был для вас полезен и дал ответы на интересующие вопросы.

Герметичные свинцово-кислотные аккумуляторы в радиолюбительской практике

Как заряжать герметичные свинцово-кислотные аккумуляторы. [теория]

Использованы материалы с сайтов www.jaycar.com, www.at-systems.ru, www.slt.ru. Графики и цитаты курсивом — www.at-systems.ru. Все остальное (c) klausmobile 2002. Повторение всех конструкций на страх и риск повторяющего…

1. Сначала пряники, кнуты потом…

Герметичные свинцово-кислотные аккумуляторы (SLA) – наиболее доступные по цене вторичные (перезаряжаемые) источники тока.

Доступные, в нынешней экономике, означает, во-первых, наличие в продаже типовых батарей напряжением 6В и 12В, емкостью от одного до тысячи А*ч, во-вторых, то, что за 1 вечнозеленый у.е. можно купить от 1.

5 до 6 Вт*ч номинальной емкости. Меньшая цифра соответствует малым батареям, большая – большим.

Что еще в плюсе? Относительно медленный саморазряд (не более 5% емкости в месяц при комнатной температуре), относительная долговечность при условии неглубоких циклов разряда. Отсутствие «памяти» (свойственной никель-кадмиевым аккумуляторам). Допускается постоянный «плавающий» подзаряд в дежурном режиме (именно так работают автомобильные аккумуляторы).

По сравнению со свинцово-кислотными аккумуляторами с жидким электролитом, герметичные аккумуляторы, естественно, выигрывают в эксплуатационной безопасности (нет вредных испарений, допустима работа в любом положении).

 А еще – герметичная батарея менее критична к условиям заряда, ее сложнее убить неграмотным зарядом. Дело в том, что гелевый электролит подобран так, что батарея никогда не заряжается полностью (с точки зрения химика).

Стало быть, выделение газа при перезаряде не происходит, так как перезаряда просто нет. Это не значит, что о контроле режима заряда можно забыть. Нельзя. Об этом далее.

Что в минусе? Во-первых, низкая удельная емкость – 25..35 Вт*ч на килограмм массы, или 60..100 Вт*ч на литр объема. Во-вторых, существенное сокращение жизни батарей при глубоких циклах разряда, а также при систематическом разряде большими токами. В-третьих, существенная зависимость напряжения и внутреннего сопротивления от глубины цикла.

2. О преждевременной старости.

Терминология: в практике принято обозначать интенсивность разряда в виде безразмерных «единиц С». 1С (один-це) численно равен емкости батареи при разряде постоянным током в течении 20 часов.

Полный разряд определяется как разряд до 1.8В на банку при комнатной температуре (т.е. до 5.4 и 10.8В для 6В и 12В батарей). Величина 1.8В установилась опытным путем как нижняя граница, при разряде ниже которой током 0.

05С начинается необратимое преждевременное старение батареи.

Таким образом, если опытным путем для батареи определено, что для того, чтобы за 20 часов разрядить ее от полностью заряженного состояния (2.1-2.3В на банку) до 1.8В на банку, требуется разрядный ток 150мА, то номинальная емкость батареи устанавливается равной 3.0 А*ч (=0.15А * 20ч).

Интенсивность тока 1С для данной батареи соответствует току разряда 3А, 2С – току разряда 6А и т.п. Если ограничить разряд достижением заданного минимума напряжения, тех же 10.

8В – окажется, что реальная емкость на токе 1С сократится примерно вдвое по сравнению с номинальной (cм.график).

А вот порог необратимого старения при большой интенсивности разряда (1C и выше), наоборот, существенно снижается – до 8В.

Многократный разряд батареи до напряжений, находящихся ниже штриховой линии приводит к выходу батареи из строя.

На практике, SLA работают в двух режимах – буферном и циклическом. При буферном режиме работы батарея постоянно подключена к зарядному устройству.

Если в электрической сети есть напряжение, то после заряда батарея в течение длительного времени находится под действием конечного напряжения заряда.

Слабый ток, протекающий через батареи, компенсирует саморазряд батареи и постоянно поддерживает батарею в полностью заряженном состоянии. В случае отключения напряжения в электрической сети, батарея разряжается на подключенную к ней нагрузку.

Буферный режим работы характерен для систем бесперебойного питания постоянного и переменного тока, которые широко применяются для компьютеров, коммуникаций и непрерывных производств. А также — автомобильных аккумуляторов при регулярной эксплуатации машины.

При циклическом режиме работы батарею заряжают, а затем отключают от зарядного устройства. Разряд батареи производится по мере необходимости.

Циклический режим работы используется при работе различных переносных или перевозимых устройств: электрических фонарей, средств коммуникаций, измерительных приборов.

Производители аккумуляторов обычно указывают в перечне технических характеристик, для какого режима работы предназначен тот или иной аккумулятор.

Стало быть, если Вы решили запитать от батарей накалы в ламповом усилителе, то это циклический режим (как приятно узнать, что всю жизнь говорил прозой…).

Но значит ли это, что можно просто разряжать батарею до предельно допустимых лампами 5.7 или 11.4В? На деле, пусть этот режим заведомо безопаснее разряда до «аварийных» 5.4 или 10.

8В, он при неверном выборе батареи приведет к достаточно глубоким циклам разряда, и тем самым сократит срок ее службы.

Глубина цикла разряда определяется как отношение реально отданных в нагрузку ампер-часов к ампер-часам, соответствующим разряду до порога необратимого старения.

Ампер-часы в знаменателе будут совпадать с номинальной емкостью только для интенсивности разряда 0.05С.

На практике, в качестве знаменателя используется именно номинальная емкость (тем более, что и постоянный ток разряда – не более, чем идеальное приближение).

Глубина цикла (если она повторяется от цикла к циклу) определяет срок службы батарей. При 100% глубине циклов срок службы SLA не превысит 200-300 циклов.

Справочно, автомобильные аккумуляторы с жидким электролитом редко выдерживают более 20 глубоких циклов. При 30% глубине циклов количество их утраивается.

Знаменитая Оптима гарантирует выживание при 100 циклах «в ноль» (у автора такая батарея служит четвертый год, но ни одного глубокого цикла «в ноль» так и не было…).

3. Пример из жизни

Теперь давайте считать. В каждом канале усилителя –пара ламп 6С4С (6В, 2А). Необходимо обеспечить минимальное время работы между зарядами 8 часов. При этом напряжение не должно опускаться ниже 5.7В (по ТУ лампы), глубина цикла не более 50%.

Из последнего требования следует, что емкость батареи – не менее 32А*ч на канал (= 2А * 8ч / 50%) . Интенсивность разряда такой батареи 0.06С (= 32А*ч / 2). Из графика следует, что за 8 часов ее напряжение упадет всего-навсего до 12.0-12.2В. Есть запас! Но только у свежей батареи.

Если Вы не забудете ее вовремя заряжать, то примерно через 500 циклов (полтора года ежедневного удовольствия) напряжение за 8 часов будет падать до тех самых 5.

7В, если не хуже… Ставьте автоматику на отключение при недостаточном напряжении, обязательно ставьте! Кстати, 32А*ч подозрительно близко к значению емкости автомобильного аккумулятора (50-65 А*ч). Так что для токов 2А и выше необслуживаемый автомобильный аккумулятор – вполне обоснованная (по цене) альтернатива.

Вот с экологией и безопасностью у них проблемы. С другой стороны, если большая АКБ не вписывается в конструктив, то можно совершенно без опаски запараллелить несколько меньших батарей (желательно, но не обязательно – одной серии, одного производителя, одного «возраста» с начала эксплуатации).

А может, попробовать буферный (дежурный) режим, чтоб заряжать постоянно, без какой-либо автоматики? Тумблер вверх – батарея разряжается, лампы играют, тумблер вниз – идет заряд, лампы… отключены от батарей! Нормальный режим заряда – заряд постоянным напряжением 2.4-2.5В на банку, на зажимах 6В батареи будет до 7.5В – лампы так недолго протянут (особенно если анодное питание выключено).

При буферном режиме эксплуатации ресурс батареи сильно зависит от температуры. Наиболее благоприятной температурой для батареи считается температура 15-20 градусов Цельсия. Увеличение температуры на 10 градусов уменьшает ресурс батареи вдвое.

На рисунке представлена типичная зависимость ресурса от температуры для аккумуляторов с расчетным ресурсом 5 -7 лет. Резюме – не ставьте батареи в одном корпусе вместе с лампами, пентиумами и т.п. горячими объектами. Вы спросите — а как же под капотом в машине…

ну, во-первых, автомобильный аккумулятор специально рассчитан на широкий диапазон температур, во-вторых, теплоемкость АКБ настолько велика, что существенно прогреть ее, даже под капотом, непросто.

В упомянутом примере, срок службы накальной батареи при ежедневных 50% циклах – полтора года.

А больше можно? В реальных условиях эксплуатации стационарных аккумуляторов нужно учитывать уменьшение ресурса батареи в случае большого числа испытанных ее разрядов.

Для 5-летних батарей, реальный ресурс будет не более 3-х лет, если батарея будет испытывать в среднем один 30-процентный разряд в день или один полный разряд в неделю.

4. Поподробнее о заряде

Наилучший режим заряда батареи при небольшой (не выше 75%) глубине разряда – заряд постоянным напряжением. Разные производители дают незначительно различающиеся значения, общеприемлемым является напряжение 2.4В на банку при циклическом заряде (14.4В для 12В батареи). В буферном режиме напряжение может быть меньшим, 2.3В на банку.

При заряде полностью разряженной батареи этот режим приводит к перегрузке по начальному току, поэтому используется комбинированный режим ограничения по току и напряжению. Обычно он называется режимом заряда I-U. Разряженную батарею сначала заряжают постоянным током, численно (в амперах) не превышающим 0.1-0.

3 номинальной емкости батареи (в ампер-часах). Например, для батареи емкостью 100 А*час ток заряда не должен превышать 10-30 ампер. По мере заряда батареи напряжение на батарее увеличивается (при постоянном токе).

После того, как напряжение на батарее достигнет конечного напряжения заряда, ток заряда начинают уменьшать, сохраняя напряжение неизменным.

Восстановление и реанимация свинцово-кислотного аккумулятора

Как заряжать герметичные свинцово-кислотные аккумуляторы. [теория]

У всех аккумуляторов есть срок годности, с многочисленными циклами заряда-разряда и множеством проработанных часов аккумулятор теряет свою емкость и держит заряд все меньше и меньше. Со временем емкость аккумулятора настолько падает что дальнейшая его эксплуатация стает невозможна.

Вероятно у многих уже накопились аккумуляторы от бесперебойников (UPS), систем сигнализаций и аварийного освещения.

В множестве бытовой и офисной техники находятся свинцово-кислотные аккумуляторы, и в независимости от марки аккумулятора и технологии производства, будь то обычный обслуживаемый автомобильный аккумулятор, AGM, гелевий (GEL) или маленький аккумулятор от фонарика, все они имеют свинцовые пластины и кислотный электролит.

По окончание эксплуатации такие аккумуляторы выбрасывать нельзя потому как они содержат свинец, в основном их ждет судьба утилизации где свинец извлекают и перерабатывают. Но все же, не смотря на то что такие аккумуляторы в основном «необслужываемые», можно попытаться их восстановить вернув им прежнюю емкость и использовать еще некоторое время.

В этой статье я расскажу о том как восстановить 12вольтовый аккумулятор от UPSa на 7ah, но способ подойдет для любого кислотного аккумулятора. Но хочу предупредить что данные меры не следует производить на полностью рабочем аккумуляторе, так как на исправном аккумуляторе добиться восстановления емкости можно всего лишь правильным способом зарядки.

Итак берем аккумулятор, в данном случае старый и разряженный, поддеваем отверткой пластмассовою крышку. Скорее всего она точечно приклеена к корпусу.Подняв крышку видим шесть резиновых колпачков, их задача не обслуживание аккумулятора, а стравливания образующихся при зарядке и работе газов, но мы воспользуемся ними в наших целях.

Снимаем колпачки и в каждое отверстие, с помощью шприца, наливаем 3мл дистиллированной воды, следует заметить что другая вода не годится для этого. А дистиллированную воду можно легко найти в аптеке или на авторынке, в самом крайнем случае может подойти талая вода от снега или чистая дождевая.

После того как мы долили воду, ставим аккумулятор на зарядку и заряжать его будем с помощью лабораторного (регулируемого) блока питания. Подбираем напряжения пока не появляются какие то значения зарядного тока. Если аккумулятор в плохом состояние то зарядного тока может не наблюдаться, поначалу, вообще.

Напряжения надо повышать, пока не появится зарядный ток хотя бы в 10-20мА. Добившись таких значений зарядного тока нужно быть внимательным, так как ток будет со временем расти и придется постоянно уменьшать напряжение. Когда ток дойдет до 100мА дальше напряжения уменьшать не надо. А когда ток заряда дойдет до 200мА нужно отключить аккумулятор на 12 часов.

Дальше снова подключаем аккумулятор на зарядку, напряжение должно быть таким чтоб ток зарядки для нашего 7ah аккумулятора был в 600мА. Также, постоянно наблюдая, поддерживаем заданный ток на протяжении 4 часов. Но смотрим за тем чтоб напряжение зарядки, для 12вольтового аккумулятора, было не больше 15-16 вольт.

После зарядки, спустя примерно час, аккумулятор нужно разрядить до 11 вольт, сделать это можно с помощью любой 12вольтовой лампочки (например на 15ват).После разрядки аккумулятор нужно снова зарядить с током в 600мА. Лучше всего проделать такую процедуру несколько раз, то есть несколько циклов заряд-разряд.

Скорее всего вернуть номинальную емкость аккумулятору не получится, так как сульфатация пластин уже понизила его ресурс, а к тому же имеют место быть и другие пагубные процессы. Но аккумулятор можно будет дальше использовать в штатном режиме и емкости для этого будет достаточно.

По поводу быстрого износа аккумуляторов в бесперебойниках, было замечено следующие причины. Находясь в одном корпусе с бесперебойником, аккумулятор постоянно поддается пассивному нагреву от активных элементов (силовых транзисторов) которые кстати говоря нагреваются до 60-70 градусов! Постоянный прогрев аккумулятора ведет к быстрому испарению электролита.

В дешевых, а порой и даже некоторых дорогих моделях UPSов отсутствует термокомпенсация заряда, то есть напряжение заряда выставлено на 13,8 вольта, но это допустимо для 10-15градусов, а для 25 градусов, а в корпусе порой и намного больше, напряжение заряда должно быть максимум 13,2-13,5 вольта! Хорошим решением будет вынести аккумулятор за пределы корпуса, если хотите продлить его срок службы.Также сказывается «постоянный маленький под заряд» бесперебойником, 13.5 вольтами и токе в 300мА. Такая подзарядка призводит к тому что когда кончается активная губчатая масса внутри аккумулятора  то начинается реакция в его электродах что призводит к тому что свинец токоотводов на (+) становится коричневым (PbO2) а на (-) стает «губчатым». Таким образом, при постоянном пере заряде, мы получаем разрушение токоотводов и «кипение» электролита с выделением водорода и кислорода, что приводит к увеличению концентрации электролита, что опять способствует разрушению электродов. Получается такой замкнутый процесс что призводит быстрому расходу ресурса аккумулятора. Кроме того такой заряд (пере заряд) большим напряжением и током от которого электролит «кипит» — переводит свинец токоотводов в порошковый оксид свинца который со временем осыпается и может даже замыкать пластины. При активном использование (частом заряде), рекомендуется раз в год доливать в аккумулятор дистиллированную воду.

Доливать только на полностью заряженный аккумулятор с контролем как уровня электролита так и напряжения. Некоем случае не переливать, лучше ее не долить потому как назад отбирать ее нельзя, потому что отсасывая электролит вы лишаете аккумулятор серной кислоты и в последствие концентрация меняется. Думаю понятно что серная кислота нелетучая поэтому в процессе «кипения» во время зарядки, она вся остается внутри аккумулятора — выходит только водород и кислород.

На клеммы подключаем цифровой вольтметр и шприцем на 5мл с иглой заливаем в каждую банку по 2-3мл дистиллированной воды, одновременно светя внутрь фонариком чтобы остановиться если вода перестала впитываться — после заливки 2-3мл смотрите в банку — увидите как вода быстро впитывается, а напряжение на вольтметре падает (на доли вольта).

Повторяем доливку для каждой банки с паузами на впитывание по 10-20сек(примерно) до тех пор пока не увидите что «стекломаты» уже влажные — то есть вода уже не впитывается. После доливки  осматриваем нет ли перелива  в каждой банке аккумулятора, вытираем весь корпус, устанавливаем на место резиновые колпачки и приклеиваем на место крышку.

Так как аккумулятор после доливки показывают примерно 50-70% зарядки, вам надо его зарядить. Но зарядку нужно осуществлять или регулируемым блоком питания или же бесперебойником или штатным устройством, но под присмотром, то есть во время зарядки необходимо пронаблюдать за состоянием аккумулятора (нужно видеть верх аккумулятора).

В случае с бесперебойником, для этого придется сделать удлинители и вывести аккумулятор за пределы корпуса UPSa. Под аккумулятор подстелем салфетки или целлофановые мешочки, заряжаем до 100% и смотрим, не протекает из какой либо банки электролит. Если вдруг такое произошло, прекращаем зарядку и убираем салфеткой подтеки.

С помощью салфетки смоченной в растворе соды — очищаем корпус, все впадины и клеммы куда попал электролит, для того чтоб нейтрализовать кислоту. Находим банку откуда произошло «выкипание» и смотрим, если в окошке видно электролит, отсасываем излишки шприцем, а потом аккуратно и плавно заправляем этот электролит обратно внутрь волокна.

Часто случается что электролит после доливки не равномерно впитался и вскипел вверх. При повторной зарядке наблюдаем за аккумулятором как описано выше и если «проблемная» банка аккумулятора снова начнет «изливаться» при зарядке, излишки электролита придется удалить из банки.

Также под осмотром следует проделать хотя бы 2-3 полных цикла разряда-заряда, если все прошло отлично и нет никаких подтеков, аккумулятор не греется (легкий нагрев при заряде не в счет), то аккумулятор можно собирать в корпус.

Ну а теперь рассмотрим особо кардинальные способы реанимации свинцово-кислотных аккумуляторов

Из аккумулятора сливается весь электролит, а внутренности промываются сначала пару раз горячей водой, а потом уже горячим раствором соды (3ч.л соды на 100мл воды) оставив в аккумуляторе раствор на 20 минут. Процесс можно повторить несколько раз, а вконце хорошенько промыв от остатков раствора соды — заливают новый электролит.

Дальше аккумулятор сутку заряжают, а спустя, в течение 10 дней, по 6 часов вдень. Для автомобильных аккумуляторов током до 10 ампер и напряжением 14-16 вольт.

Второй способ это обратная зарядка, для этой процедуры понадобится мощный источник напряжения, для автомобильных аккумуляторов например сварочный аппарат, рекомендуемый ток — 80ампер напряжением 20 вольт.

Делают переполюсовку, то есть плюс к минусу а минус к плюсу и на протяжение пол часа «кипятят» аккумулятор с его родным электролитом, после чего электролит сливают и промывают аккумулятор горячей водой. Дальше заливают новый электролит и соблюдая новую полярность, на протяжение сутки заряжают током 10-15 ампер.

Но самый эффективный способ делается с помощью хим. веществ. Из полностью заряженного аккумулятора сливают электролит и после неоднократной промывки водой, заливают аммиачный раствор трилона Б (ЭТИЛЕНДИАМИНТЕТРАУКСУСНОКИСЛОГО натрия), содержащий 2 весовых процента трилона Б и 5 процентов аммиака.

Происходит процесс десульфатации на протяжение 40 — 60 минут, на протяжение которого с небольшими брызгами выделяется газ. По прекращению такого газообразования можно судить о завершение процесса. При особо сильной сульфатации аммиачный раствор трилона Б следует залить снова, убрав перед этим отработавший.

Вконце процедуры внутренности аккумулятора тщательно промывают несколько раз дистиллированной водой и заливают новый электролит нужной плотности. Аккумулятор заряжают стандартным способом до номинальной емкости. По поводу аммиачного раствора трилона Б, его можно разыскать в химических лабораториях и хранить в герметичных емкостях в темном месте.

А вообще если интересно то состав электролита которые выпускают фирмы Lighting, Electrol, Blitz, akkumulad, Phonix, Toniolyt и некоторые другие, это водный раствор серной кислоты (350-450гр. на литр) с прибавлением сернокислых солей магния, алюминия, натрия, аммония. В составе электролита фирмы Gruconnin кроме того содержатся калиевые квасцы и медный купорос.

После восстановления аккумулятор можно заряжать обычным для данного типа способом (например в UPSe) и не допускать разряда ниже 11вольт. В многих бесперебойниках присутствует функция «калибровка АКБ» с помощью которой можно осуществлять циклы разряд-заряда.

Подключив на выходе бесперебойника нагрузку в 50% от максимума ИБП, запускаем эту функцию и бесперебойник разряжает АКБ до 25% а потом заряжает до 100% Ну а на совсем примитивном примере зарядка такого аккумулятора выглядит так: На аккумулятор подается стабилизированное напряжение 14.

5 вольта, через проволочный переменный резистор большой мощности или через стабилизатор тока. Ток заряда расчсчитывается по простой формуле: емкость аккумулятора разделяем на 10, например для аккумулятора в 7ah будет — 700мА. И на стабилизаторе тока или с помощью переменного проволочного резистора необходимо выставить ток в 700мА. Ну а в процессе зарядки ток начнет падать и нужно будет уменьшать сопротивления резистора, со временем ручка резистора придет до упора в начальное положение и сопротивление резистора будет равно нулю. Ток будет дальше постепенно уменьшатся до нуля пока напряжение на аккумуляторе не станет постоянным — 14.5 вольта. Аккумулятор заряжен.

Дополнительную информацию по «правильной» зарядке аккумуляторов можно найти здесь.

Для наглядности разберем старый аккумулятор от бесперебойника

Что здесь можно увидеть. Намазка (-) пластины (она «серая» по цвету) полностью высохла от постоянного под заряда, который производится в бесперебойнике. Светлая пластина вся в сульфате свинца, происходит такое от неравномерного использования емкости каждой банки аккумулятора и соответственно отсутствие добивки емкости.

светлые кристаллы на пластинах — это сульфатация

Отдельная «банка» батарея аккумулятора подвергалась постоянному недозаряду и в результате покрыта сульфатами, ее внутреннее сопротивление росло с каждым глубоким циклом, чтоб привело к тому что, во время заряда она стала «закипать» раньше всех, из-за потери емкости и выведения электролита в нерастворимые сульфаты. Плюсовые пластины и их решетки превратились по консистенции в порошок, в следствие постоянного подзаряда бесперебойником в режиме «стенд-бай». Свинцово кислотные аккумуляторы кроме автомобилей, мотоциклов и разнообразной бытовой техники, где только не встречаются и в фонариках и в часах и даже в самой мелкой электронике. И если вам попал в руки такой «нерабочий» свинцово-кислотный аккумулятор без опознавательных знаков и вы не знаете какое напряжение он должен выдавать в рабочем состояние. Это легко можно узнать по количеству банок  в аккумуляторе. Отыщите защитную крышку на корпусе аккумулятора и снимите ее. Вы увидите колпачки для стравливание газа. по их количеству станет понятно на сколько «банок» данный аккумулятор. 1 банка — 2вольта (полностью заряженная — 2.17 вольта), то есть если колпачка 2 значит аккумулятор на 4 вольта. Полностью разряженная банка аккумулятора должна быть не ниже 1.8 вольта, ниже разряжать нельзя!Ну а вконце дам небольшую идею, для тех кому не хватает средств на покупку новых аккумуляторов. Найдите в вашем городе фирмы которые занимаются компьютерной техникой и УПСами (бесперебойниками для котлов, аккумуляторами для систем сигнализаций), договоритесь с ними чтоб они не выбрасывали старые аккумуляторы от бесперебойников а отдавали вам возможно по символической цене. Практика показывает что половина AGM (гелевых) аккумуляторов можно восстановить если не до 100% то до 80-90% точно! А это еще пару лет отличной работы аккумулятора в вашем устройстве.

Зарядка аккумуляторов свинцово-кислотного типа

Как заряжать герметичные свинцово-кислотные аккумуляторы. [теория]

Категория: Поддержка по зарядным устройствамОпубликовано 03.05.2016 12:02Автор: Abramova Olesya

Свинцово-кислотные аккумуляторы используют специальный алгоритм зарядки, известный как CC/CV (constant current/constant voltage — с англ. «постоянный ток/постоянное напряжение»).

Постоянный ток заряда воздействует на аккумулятор, постепенно повышая напряжение на клеммах. Когда это напряжение достигает определенного значения, зарядный ток понижается до уровня насыщения. Общее время зарядки составляет 12-16 часов для обычных аккумуляторов и 36-48 для специальных промышленных образцов.

Время зарядки может быть уменьшено до 8-10 часов путем приложения более высоких токов и использования особых многоступенчатых режимов, но тем не менее полностью зарядить аккумулятор таким способом не выйдет. Свинцово-кислотная электрохимическая система является довольно медленной и не может заряжаться так быстро, как другие.

(Смотрите BU-202: Новые свинцово-кислотные электрохимические системы).

Зарядка свинцово-кислотного аккумулятора должна состоять из трех этапов — режима зарядки постоянным током [1], режима насыщения [2] и режима поддержания заряда [3].

Заряд постоянным током поставляет большую часть энергии и занимает около половины времени от всего процесса зарядки; заряд насыщения использует более низкую силу тока и необходим для достижения полной зарядки, а режим поддержания компенсирует потери, вызванные саморазрядом.

Во время зарядки постоянным током аккумулятор получает около 70 процентов своего заряда в течение 5-8 часов; заполнение оставшихся 30 процентов лежит на режиме насыщения, который длится еще 7-10 часов.

Режим насыщения является очень важным для аккумулятора, и если им пренебрегать, то это чревато сульфатацией [BU-804b], которая приводит к потере производительности или даже к выходу из строя.

Режим поддержания на третьем этапе призван сохранять аккумулятор в заряженном состоянии. На рисунке 1 показаны три этих этапа.

Рисунок 1: Этапы зарядки свинцово-кислотных аккумуляторов. Аккумулятор считается полностью заряженным, когда его напряжение достигает определенного установленного уровня. Режим поддержки компенсирует саморазряд, который в той или иной степени присутствует во всех электрических батареях.

Переход от стадии 1 к стадии 2 происходит, когда напряжение аккумулятора достигает определенного предела. Зарядный ток начинает плавно понижаться, и это понижение происходит во время всего режима насыщения.

В конце, когда аккумулятор полностью заряжен, значение зарядного тока составляет примерно 3-5 процентов от его емкости.

Неисправный аккумулятор с большими потерями никогда не сможет достигнуть этого низкого тока насыщения, поэтому в зарядных устройствах есть встроенный таймер, который принудительно завершает зарядку.

Правильная установка зарядного напряжения аккумулятора является крайне важной и должна составлять от 2,30 до 2,45 вольт на элемент. Выбор значения зарядного напряжения из этого диапазона лежит на совести производителей, и отдать преимущество какому-либо определенному значению весьма непросто.

С одной стороны, аккумулятор должен быть полностью заряжен, чтобы использовать максимальную емкость и избежать сульфатации на отрицательных пластинах; а с другой стороны, излишнее перенасыщение и несвоевременное переключение в режим поддержания заряда вызывает коррозию положительных пластин, а также приводит к излишнему газообразованию и потерям воды из электролита.

Температура может оказывать влияние на напряжение и вследствие этого выбор зарядного напряжения может быть несколько затруднен.

Более жаркое состояние окружающей среды требует немного низшего напряжения, а более холодное — немного большего.

Продвинутые зарядные устройства имеют температурные датчики для контроля и регулировки зарядных характеристик, чтобы достигнуть оптимальной эффективности зарядки.

Температурный коэффициент зарядки свинцово-кислотных элементов составляет -3мВ/°С.

Смысл состоит в том, что устанавливается некое значение напряжения для усредненной температуры 25°С, и это зарядное напряжение должно быть уменьшено на 3 мВ за каждый градус выше 25°С, и соответственно, увеличено на 3 мВ за каждый градус ниже 25°С.

Если такие возможности с измерением температуры невозможны, то лучше выбрать более низкое зарядное напряжение из соображений безопасности. В таблице 2 сравниваются преимущества и недостатки выбора различных пиковых значений зарядного напряжения для свинцово-кислотного аккумулятора.

2,30 — 2,35 В на элемент 2,40 — 2,45 В на элемент
Преимущества Увеличение срока службы; умеренная температура аккумулятора; температура зарядки может превышать 30°С. Более высокие показатели емкости; менее предрасположены к сульфатации
Недостатки Медленный процесс зарядки; показатель емкости нестабилен и уменьшается с каждым циклом. Подвержены сульфатации. Склонность к газообразованию и коррозии; необходимость обслуживания путем разбавления водой электролита. Не подходит для зарядки при высокой окружающей температуре из-за сильного перезаряда.

Таблица 2: Влияние зарядного напряжения на свинцово-кислотные аккумуляторы небольшой емкости. Цилиндрические свинцово-кислотные элементы имеют более высокое значение напряжение в сравнении с VRLA и стартерными аккумуляторами.

После полной зарядки с помощью режима насыщения аккумулятор не должен находиться в режиме поддержания заряда более 48 часов. Это особенно важно для герметичных версий, поскольку они более чувствительны к перезаряду в сравнении с затопленными моделями. Перезаряд приводит к излишнему тепло- и газообразованию.

Рекомендуемое значение напряжения поддержания заряда для большинства затопленных свинцово-кислотных аккумуляторов составляет 2,25-2,27 В на элемент.

К большим стационарным аккумуляторам при температуре окружающей среды 25°С, как правило, применяется напряжение 2,25 В на элемент.

Производители рекомендуют понижать напряжение поддержания заряда в случае, если температура окружающей среды превышает 29°С.

Не все зарядные устройства имеют функцию поддержания заряда, а в транспортных средствах это вообще редкость.

Если зарядное устройство остается в режиме поддержания заряда и напряжение не опускается ниже 2,30 В на элемент, то не допускайте, чтобы аккумулятор оставался подключенным к такому зарядному устройству более 48 часов.

Если аккумулятор не эксплуатируется, лучше хранить его отдельно, подвергая зарядке каждые 6 месяцев (аккумулятор системы AGM [BU-201a] – каждые 6-12 месяцев).

Вышеописанные параметры напряжений применяются и к затопленным, и к аккумуляторам с клапаном сброса давления (около 34 кПа).

Цилиндрические герметичные свинцово-кислотные аккумуляторы, такие как Hawker Cyclon, требуют более высоких напряжений, точное значение которых следует узнавать из спецификаций производителя. Приложение неправильного зарядного напряжения вызовет постепенное уменьшение емкости аккумулятора вследствие сульфатации.

В аккумуляторных элементах Hawker Cyclon установлен специальный клапан сброса давления 345 кПа, что позволяет иметь место процессу рекомбинации газов, которые образуются во время зарядки.

Возможны трудности при применении режима поддержания заряда на возрастные аккумуляторы, так как каждый элемент в них имеет свое уникальное состояние. Элементы, будучи соединены последовательно, получают одинаковый зарядный ток, и практически невозможно отслеживать состояние каждого.

Возможна ситуация, когда присутствуют “слабые” элементы, которые уже подвергаются перезаряду, и в то же время другие еще полностью не зарядились. Ток поддержания заряда, который является слишком высоким для элемента с ухудшенными характеристиками, может вызвать сульфатацию более сильного соседнего элемента.

Существуют специальные устройства балансировки элементов аккумулятора, которые могут компенсировать разницу напряжений, вызванную дисбалансом элементов.

Колебание зарядного напряжения также является одной из проблем зарядных устройств. Пик такого напряжения принимает слишком высокое значение, вызывая выделение водорода, а во время его проседания происходит краткий период разряда аккумулятора, что вкупе приводит к истощению электролита. Производители стараются ограничивать колебания напряжения разбросом максимум в 5 процентов.

Колебания зарядного напряжения могут нести не только проблемы — изучается его влияние на уменьшение сульфатации в аккумуляторе. Но этот эффект еще не до конца изучен, и не все производители используют пульсацию в своих зарядных устройствах.

Большинство стационарных аккумуляторов эксплуатируются в режиме поддержания заряда, который неплохо себя рекомендует.

Другим решением может быть режим гистерезиса, который подразумевает отключение поддержания заряда, когда аккумулятор находится в режиме ожидания.

Суть этого режима состоит в том, что аккумулятор просто подзаряжается время от времени, восполняя потери энергии от саморазряда или от приложенной нагрузки. Этот режим хорошо подходит для установок, не подключенных к нагрузке во время режима ожидания.

Свинцово-кислотные аккумуляторы всегда должны храниться в заряженном состоянии. Их необходимо заряжать каждые 6 месяцев, чтобы предотвратить падение напряжения ниже 2,05 В на элемент, что вызывает сульфатацию. Свинцово-кислотные аккумуляторы, использующие технологию AGM [BU-201a], могут храниться без зарядки несколько дольше.

Измерение напряжения разомкнутой цепи во время хранения обеспечивает надежную индикацию уровня заряда. Напряжение элемента 2,10 В при комнатной температуре говорит о заряда на уровне 90 процентов.

Такой аккумулятор находится в хорошем состоянии и нуждается лишь в небольшой подзарядке перед началом эксплуатации.

(Смотрите BU-903: Как измерить степень заряженности электрической батареи).

При измерении напряжения холостого хода учитывайте температуру окружающей среды. Холодный аккумулятор имеет слегка пониженное напряжение, а теплый — повышенное. Измерять напряжение разомкнутой цепи лучше всего после нескольких часов покоя аккумулятора, так как зарядные или разрядные процессы вносят искажения.

Существует некоторое предубеждение против покупки нового аккумулятора, если его напряжение составляет меньше 2,10 В на элемент.

Такое низкое напряжение может быть вызвано потерей заряда из-за длительного хранения или высокого саморазряда вследствие короткого замыкания.

И в самом деле, статистические исследования показали, что такие аккумуляторы с пониженным начальным напряжением имеют большее количество отказов. Стоит отметить, что пороговое значение напряжение в 2,10 В относится не ко всем типам свинцово-кислотных аккумуляторов.

Долив воды в электролит

Долив воды в электролит является единственным крайне важным аспектом в обслуживании затопленных свинцово-кислотных аккумуляторов, которым, к сожалению, часто пренебрегают. Частота долива зависит от условий эксплуатации, методов зарядки и рабочей температуры. Перезаряд также приводит к увеличенному расходу воды из электролита.

Новые аккумуляторы должны проверяться каждые несколько недель на необходимость долива воды. Это позволит уберечь верхнюю часть пластин от попадания на воздух, что может привести к необратимым повреждениям вследствие окисления, что, в свою очередь, приводит к снижению емкости и производительности аккумулятора.

При низком уровне электролита необходимо немедленно добавить дистиллированную или де-ионизированную воду. Добавлять воду до требуемого уровня необходимо не перед зарядкой (это может привести к переполнению), а после зарядки.

Никогда не добавляйте готовый электролит, так как это приведет к увеличению удельной плотности и будет способствовать коррозии.

Некоторые аккумуляторы оборудованы специальной доливочной системой, которая контролирует уровень и плотность электролита.

Рекомендации по зарядке свинцово-кислотных аккумуляторов

  • Производите зарядку в хорошо вентилируемом помещении. Водород, образующийся во время зарядки, является взрывоопасным газом. (Смотрите BU-703: Влияние электрохимических батарей на здоровье человека).
  • Выберите соответствующую программу зарядки для затопленной, гелевой или AGM версии аккумулятора. Проверьте спецификации производителя о рекомендуемых пороговых значениях напряжения.
  • Дозаряжайте свинцово-кислотные аккумуляторы после каждого использования во избежание сульфатации [BU-804b]. Не храните батареи с низким зарядом.
  • Пластины затопленных аккумуляторов должны быть полностью погружены в электролит. При низком уровне электролита долейте дистиллированную или де-ионизированную воду. Никогда не доливайте готовый электролит.
  • Доливайте воду до обозначенного уровня только после зарядки. Долив при низком уровне заряда может вызвать утечку кислоты.
  • Образование пузырьков в затопленном свинцово-кислотном аккумуляторе указывает на то, что он достиг состояния полного заряда (на аноде образуется водород, а на катоде — кислород).
  • Понизьте напряжение режима поддержания заряда, если температура окружающей среды выше 29°С.
  • Не допускайте замерзания свинцово-кислотного аккумулятора. Пустой аккумулятор замерзает раньше в сравнении с полностью заряженным. Никогда не заряжайте замерзший аккумулятор.
  • Избегайте зарядки при температуре выше 49°С.

Последнее обновление 2016-02-23

Свинцово-кислотный аккумулятор: принцип работы, виды

Как заряжать герметичные свинцово-кислотные аккумуляторы. [теория]

Свинцово-кислотный аккумулятор — один из самых распространенных типов батарей, использующийся в качестве источника электроэнергии для автомобиля, мотоцикла, мопеда, или в случае необходимости создания запасных источников питания.

Общая информация

Первая модель свинцово-кислотного аккумулятора была создана в середине XIX века ученым Гастоном Планте. Тогда его конструкция подразумевала две свинцовых пластины, стеклянную колбу с серной кислотой и обычное полотно в роли сепаратора. Это устройство обладало малой емкостью заряда и не получило достаточного распространения.

Но идею оценили другие ученые и стали экспериментировать с составом электродов. В итоге самой удачной оказалась решетчатая конструкция из сплава с добавлением сурьмы.

Изобретение генераторов постоянного тока решило проблему с подходящим источником энергии, и свинцово-кислотные аккумуляторные батареи наконец-таки получили широкое распространение.

В конце ХХ века их конструкция усложнилась, появились необслуживаемые аккумуляторы, в электроды которых был добавлен кальций. Это нововведение позволило существенно сократить расход воды.

В идеале, батареи такого типа способны работать без пополнения количества воды в электролите весь срок службы.

Кстати, при необходимости утратившее работоспособность устройство можно попробовать восстановить, используя принцип действия кислотных аккумуляторов.

Принцип работы и виды

Кислотные аккумуляторы — вторичные источники тока, который образуется за счет реакций восстановления и окисления, проходящих между материалом электродов и электролитом. В качестве электролита используется водный раствор серной кислоты. Остановимся на подробнее на устройстве аккумуляторов этого типа.

По конструктивным особенностям современные батареи делятся на три типа:

  1. С жидким электролитом. Могут быть как обслуживаемыми, так и необслуживаемыми. Электролит — смесь серной кислоты и воды, находящаяся в жидком виде. В версии, требующей обслуживания, пластины изготавливаются из свинца с добавлением сурьмы и мышьяка. В таких батареях высок расход воды, что делает обслуживание аккумулятора не очень простой задачей. После замены сурьмы на кальций в состав сплава отрицательной пластины появились так называемые гибридные аккумуляторы, более удобные в эксплуатации, чем их предшественники. И, наконец, с добавлением кальция в обе пластины началась эра устройств, не требующих восстановления количества воды весь срок службы. Несмотря на совершенство конструкции, у них есть один минус — плохо переносят почти полный разряд, особенно в условиях отрицательной температуры.
  2. Гелевые АКБ. В этих конструкциях электролит находится в сгущенном состоянии благодаря добавлению кремния. Плюс такой конструкции в том, что батарея становится абсолютно герметичной. Газ, выделяющийся в процессе химических реакций, находит себе место в порах геля, а при обратных реакциях вновь присоединяется к раствору серной кислоты. Но это очень капризные батареи. Они требуют неукоснительного соблюдения условий эксплуатации, чувствительны к перепадам температур, справляются с высокой нагрузкой хуже, чем их жидкостные собратья. Но они хорошо справляются с сильной разрядкой, действительно не требуют дополнительного обслуживания. Гелевые АКБ чаще используются в качестве стационарно резервного источника питания и редко устанавливаются на транспорт.
  3. AGM-аккумуляторы. Это самый современный вид батарей, сочетающий все достоинства предыдущих вариантов. Электролит остается жидким, но циркулирует в пористой конструкции из тончайших стеклянных волокон. Два вида пор — большие и маленькие — обеспечивают свободное перемещение газа до того, как запустится обратная реакция. Конструкция устройства такова, что аккумулятор может работать, даже если его оболочка незначительно повреждена. Не боятся они и холода, глубокой разрядки, вибраций. Единственная уязвимость такого устройства — чувствительность к перепадам напряжения. Эту проблему можно решить, контролируя работу генератора и пользуясь надежным ЗУ.

Емкость и напряжение

У любого вида аккумулятора есть два основных параметра: емкость и напряжение. Емкость определяет количество энергии, которое аккумулятор может отдать при рабочем напряжении, измеряется в Ампер-часах. Она зависит от площади свинцовых пластин, участвующих в химических реакциях. При износе аккумулятора его емкость уменьшается из-за естественных потерь в размере пластин.

Напряжение — количество электрического тока, отдаваемое батареей. Измеряется в вольтах, зависит от плотности электролита. Оба параметра необходимо контролировать, так как от них зависит работоспособность устройства.

Для измерения напряжения используется вольтмер, правильные показатели — от  11 до 13 вольт (раньше производились аккумуляторы с напряжением 6 вольт, теперь они считаются устаревшими).

Чтобы измерить емкость, существует несколько методов:

  • «Нагрузочная вилка» — измерение напряжения при эталонной нагрузке. Аккумулятор должен быть полностью заряжен.
  • Специальный индикатор, способный посылать сигнал, определяющий площадь свинцовых пластин, и преобразовывать его в цифры. Не требует особых условий использования.
  • В домашних условиях можно подключить мощную автомобильную галогеновую лампу и замерить в это время напряжение. Ели в течение 2 минут оно держится на уровне ~11 вольт, а свет лампы ровный и сильный — все в порядке.

Эксплуатация и восстановление

В зависимости от типа используемого аккумулятора, условия его эксплуатации будут сильно отличаться. Единственная общая черта — всех их необходимо вовремя заряжать. Так, обслуживаемая батарея требует долива воды в аккумулятор, что может представлять собой опасность — кислота нагревает воду, и кипяток может ощутимо обжечь автовладельца.

Конструкция необслуживаемых аккумуляторов не предполагает возможности пополнения запаса воды в них. Но, даже если произвести небольшие изменения в конструкции, обжечься кипятком все равно будет проблематично.

Для батарей такого типа важно не допускать больших колебаний напряжения. Это справедливо и для автомобильного, и для мотоциклетного аккумулятора. Но герметичный корпус уменьшает варианты восстановления устройства.

Как восстановить батарею? Часто снижение емкости или напряжения аккумулятора происходит из-за того, что некоторые участки электролита слишком уплотнились. При многоразовой небольшой зарядке эти области разжижаются, и потенциал устройства восстанавливается.

Существует несколько рецептов восстанавливающего раствора, который несколько улучшает состояние устройства. К сожалению, его использование несколько затруднено на батареях с герметизированным корпусом, так как слить из него этот раствор будет проблематично.

Какой бы аккумулятор ни был установлен на транспортном средстве, важно соблюдать инструкцию по его использованию, вовремя заряжать и, при необходимости, пополнять запас воды в электролите. Тогда срок службы батареи будет максимально долгим.

Поделиться новостью